A323765 Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.
1, 1, 3, 5, 9, 10, 22, 20, 37, 44, 65, 68, 127, 119, 182, 226, 307, 335, 511, 544, 782, 913, 1171, 1359, 1908, 2121, 2738, 3286, 4174, 4821, 6305, 7182, 9108, 10739, 13195, 15548, 19465, 22397, 27477, 32423, 39448, 45843, 55995, 64871, 78343, 91761, 109325
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions: ((1)) ((2)) ((3)) ((4)) ((5)) ((11)) ((21)) ((31)) ((41)) ((1)(1)) ((111)) ((22)) ((32)) ((1)(1)(1)) ((211)) ((311)) ((1))((1)(1)) ((1111)) ((221)) ((2)(2)) ((2111)) ((11)(11)) ((11111)) ((1)(1)(1)(1)) ((1)(1)(1)(1)(1)) ((1))((1)(1)(1)) ((1))((1)(1)(1)(1)) ((1)(1))((1)(1)(1))
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
Comments