cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A323768 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^k.

Original entry on oeis.org

1, 1, 2, 3, 5, 14, 43, 171, 1234, 9075, 94295, 1685324, 28688843, 804627839, 34189166176, 1379425012899, 106952499421507, 10394354507270548, 1052079100669253203, 221582922117645427461, 48152920476428200426258, 13152336142340905111739041
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k, k]^k, {k, 0, n/2}], {n, 0, 25}]
  • PARI
    {a(n) = sum(k=0, n\2, binomial(n-k, k)^k)} \\ Seiichi Manyama, Jan 27 2019

Formula

Limit_{n->infinity} a(n)^(1/n^2) = ((1-r)/r)^(r^2/(4*r-1)) = 1.17123387669321050316385592324128471190583619526359450226558587879190245..., where r = A323773 = 0.3663201503052830964087236563781171194011826607210994595... is the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r).

A323767 A(n,k) = Sum_{j=0..floor(n/2)} binomial(n-j,j)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 5, 3, 1, 1, 2, 9, 11, 8, 4, 1, 1, 2, 17, 29, 26, 13, 4, 1, 1, 2, 33, 83, 92, 63, 21, 5, 1, 1, 2, 65, 245, 338, 343, 153, 34, 5, 1, 1, 2, 129, 731, 1268, 1923, 1281, 376, 55, 6
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,      1,       1, ...
   1,  1,   1,    1,     1,      1,       1, ...
   2,  2,   2,    2,     2,      2,       2, ...
   2,  3,   5,    9,    17,     33,      65, ...
   3,  5,  11,   29,    83,    245,     731, ...
   3,  8,  26,   92,   338,   1268,    4826, ...
   4, 13,  63,  343,  1923,  10903,   62283, ...
   4, 21, 153, 1281, 11553, 108801, 1050753, ...
		

Crossrefs

Columns 0-5 give A004526(n+2), A000045(n+1), A051286, A181545, A181546, A181547.
Main diagonal gives A323769.
Cf. A011973,

Programs

  • Mathematica
    f := Sum[Power[Binomial[#1 - i, i], #2], {i, 0, #1/2}] &;a = Flatten[Reverse[DeleteCases[Table[Table[f[m - n, n], {n, 0, 20}], {m, 0, 20}], 0, Infinity], 2]] (* Elijah Beregovsky, Nov 24 2020 *)
Showing 1-2 of 2 results.