cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323774 Number of multiset partitions, whose parts are constant and all have the same sum, of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 3, 16, 8, 14, 3, 39, 3, 16, 15, 40, 3, 50, 3, 54, 17, 20, 3, 135, 10, 22, 25, 73, 3, 129, 3, 119, 21, 26, 19, 273, 3, 28, 23, 217, 3, 203, 3, 123, 74, 32, 3, 590, 12, 106, 27, 154, 3, 370, 23, 343, 29, 38, 3, 963, 3, 40, 95, 450, 25, 467, 3
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

An unlabeled version of A279789.

Examples

			The a(1) = 1 through a(6) = 12 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (111)      (22)          (11111)          (33)
       (1)(1)  (1)(1)(1)  (1111)        (1)(1)(1)(1)(1)  (222)
                          (2)(2)                         (3)(3)
                          (2)(11)                        (111111)
                          (11)(11)                       (3)(111)
                          (1)(1)(1)(1)                   (2)(2)(2)
                                                         (111)(111)
                                                         (2)(2)(11)
                                                         (2)(11)(11)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Cf. A001970, A006171 (constant parts), A007716, A034729, A047966 (uniform partitions), A047968, A279787, A279789 (twice-partitions version), A305551 (equal part-sums), A306017, A319056, A323766, A323775, A323776.

Programs

  • Mathematica
    Table[Length[Join@@Table[Union[Sort/@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@ptn]],{ptn,Select[IntegerPartitions[n],SameQ@@#&]}]],{n,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(d) + n/d - 1, n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(0) = 1; a(n) = Sum_{d|n} binomial(tau(d) + n/d - 1, n/d), where tau = A000005.