A323774 Number of multiset partitions, whose parts are constant and all have the same sum, of integer partitions of n.
1, 1, 3, 3, 7, 3, 12, 3, 16, 8, 14, 3, 39, 3, 16, 15, 40, 3, 50, 3, 54, 17, 20, 3, 135, 10, 22, 25, 73, 3, 129, 3, 119, 21, 26, 19, 273, 3, 28, 23, 217, 3, 203, 3, 123, 74, 32, 3, 590, 12, 106, 27, 154, 3, 370, 23, 343, 29, 38, 3, 963, 3, 40, 95, 450, 25, 467, 3
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 12 multiset partitions: (1) (2) (3) (4) (5) (6) (11) (111) (22) (11111) (33) (1)(1) (1)(1)(1) (1111) (1)(1)(1)(1)(1) (222) (2)(2) (3)(3) (2)(11) (111111) (11)(11) (3)(111) (1)(1)(1)(1) (2)(2)(2) (111)(111) (2)(2)(11) (2)(11)(11) (11)(11)(11) (1)(1)(1)(1)(1)(1)
Links
- Antti Karttunen, Table of n, a(n) for n = 0..20000
Crossrefs
Programs
-
Mathematica
Table[Length[Join@@Table[Union[Sort/@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@ptn]],{ptn,Select[IntegerPartitions[n],SameQ@@#&]}]],{n,30}]
-
PARI
a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(d) + n/d - 1, n/d))); \\ Michel Marcus, Jan 28 2019
Formula
a(0) = 1; a(n) = Sum_{d|n} binomial(tau(d) + n/d - 1, n/d), where tau = A000005.
Comments