A323786 Number of non-isomorphic weight-n multisets of multisets of non-singleton multisets.
1, 0, 2, 3, 19, 39, 200, 615, 2849, 11174, 52377, 239269, 1191090, 6041975, 32275288, 177797719, 1017833092, 6014562272, 36717301665, 230947360981, 1495562098099, 9956230757240, 68070158777759, 477439197541792, 3432259679880648, 25267209686664449
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 19 multiset partitions: {{1111}} {{1112}} {{1123}} {{1234}} {{11}{11}} {{1122}} {{11}{23}} {{12}{34}} {{11}}{{11}} {{11}{12}} {{12}{13}} {{12}}{{34}} {{11}{22}} {{11}}{{23}} {{12}{12}} {{12}}{{13}} {{11}}{{12}} {{11}}{{22}} {{12}}{{12}} Non-isomorphic representatives of the a(5) = 39 multiset partitions: {{11111}} {{11112}} {{11123}} {{11234}} {{12345}} {{11}{111}} {{11122}} {{11223}} {{11}{234}} {{12}{345}} {{11}}{{111}} {{11}{112}} {{11}{123}} {{12}{134}} {{12}}{{345}} {{11}{122}} {{11}{223}} {{23}{114}} {{12}{111}} {{12}{113}} {{11}}{{234}} {{12}{112}} {{12}{123}} {{12}}{{134}} {{22}{111}} {{13}{122}} {{23}}{{114}} {{11}}{{112}} {{23}{111}} {{11}}{{122}} {{11}}{{123}} {{12}}{{111}} {{11}}{{223}} {{12}}{{112}} {{12}}{{113}} {{22}}{{111}} {{12}}{{123}} {{13}}{{122}} {{23}}{{111}}
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp(sExp(A-x*sv(1)))))} \\ Andrew Howroyd, Jan 17 2023
Extensions
Terms a(8) and beyond from Andrew Howroyd, Jan 17 2023
Comments