cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323819 Number of non-isomorphic connected set-systems covering n vertices.

Original entry on oeis.org

1, 1, 3, 30, 1912, 18662590, 12813206131799685, 33758171486592987138461432668177794, 1435913805026242504952006868879460423767388571975632398910903473535427583
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 30 set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1},{2,3},{1,2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{3},{2,3},{1,2,3}}
  {{2},{3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Cf. A000295, A003465, A016031, A048143, A055621 (not necessarily connected), A293510, A317795, A323817, A323818 (labeled case).

Programs

  • Mathematica
    nmax = 12;
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    f[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]]/2;
    A055621 = f /@ Range[0, nmax];
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, EULERi[A055621 // Rest]] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz in A055621 *)

Formula

Inverse Euler transform of A055621.