A323819 Number of non-isomorphic connected set-systems covering n vertices.
1, 1, 3, 30, 1912, 18662590, 12813206131799685, 33758171486592987138461432668177794, 1435913805026242504952006868879460423767388571975632398910903473535427583
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(3) = 30 set-systems: {{1,2,3}} {{3},{1,2,3}} {{1,3},{2,3}} {{2,3},{1,2,3}} {{2},{3},{1,2,3}} {{2},{1,3},{2,3}} {{3},{1,3},{2,3}} {{1},{2,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3}} {{1,3},{2,3},{1,2,3}} {{1},{2},{3},{1,2,3}} {{1},{2},{1,3},{2,3}} {{2},{3},{1,3},{2,3}} {{1},{3},{2,3},{1,2,3}} {{2},{3},{2,3},{1,2,3}} {{3},{1,2},{1,3},{2,3}} {{2},{1,3},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}} {{1},{2},{3},{1,3},{2,3}} {{1,2},{1,3},{2,3},{1,2,3}} {{1},{2},{3},{2,3},{1,2,3}} {{2},{3},{1,2},{1,3},{2,3}} {{1},{2},{1,3},{2,3},{1,2,3}} {{2},{3},{1,3},{2,3},{1,2,3}} {{3},{1,2},{1,3},{2,3},{1,2,3}} {{1},{2},{3},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,3},{2,3},{1,2,3}} {{2},{3},{1,2},{1,3},{2,3},{1,2,3}} {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
- Thomas Delacroix, Meaningful objective frequency-based interesting pattern mining, Thesis, 2021.
- Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin, Hypergraph Motifs and Their Extensions Beyond Binary, arXiv:2310.15668 [cs.SI], 2023.
Crossrefs
Programs
-
Mathematica
nmax = 12; b[n_, i_, l_] := b[n, i, l] = If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]]; f[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]]/2; A055621 = f /@ Range[0, nmax]; mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]]; Join[{1}, EULERi[A055621 // Rest]] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz in A055621 *)
Formula
Inverse Euler transform of A055621.