A323824 a(0) = 6; thereafter a(n) = 4*a(n-1) + 1.
6, 25, 101, 405, 1621, 6485, 25941, 103765, 415061, 1660245, 6640981, 26563925, 106255701, 425022805, 1700091221, 6800364885, 27201459541, 108805838165, 435223352661, 1740893410645, 6963573642581, 27854294570325, 111417178281301, 445668713125205
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Mike Warburton, Ulam-Warburton Automaton - Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Mathematica
A323824[n_]:=(19*4^n-1)/3;Array[A323824,30,0] (* or *) LinearRecurrence[{5,-4},{6,25},30] (* Paolo Xausa, Nov 14 2023 *) NestList[4#+1&,6,30] (* Harvey P. Dale, Nov 26 2024 *)
-
PARI
Vec((6 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^25)) \\ Colin Barker, Feb 01 2019
-
PARI
a(n) = (19*4^n - 1) / 3 \\ Colin Barker, Feb 01 2019
Formula
G.f.: (6 - 5*x) / ((1 - x)*(1 - 4*x)).
a(n) = (19*4^n - 1) / 3. - Colin Barker, Feb 01 2019