cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323843 Number of n-node connected Stanley graphs.

Original entry on oeis.org

0, 1, 1, 2, 8, 52, 502, 6824, 127166, 3205924, 108975934, 5006366048, 312601245662, 26708244267148, 3142852107059758, 512229404374936616, 116165284523764481294, 36791597841822774872116, 16320947226945992981680606, 10163558457757761048966068912
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    p:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, p(n)-add(
          binomial(n, j)*p(n-j)*a(j)*j, j=1..n-1)/n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}];
    p[n_] := p[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a[n_] := a[n] = If[n == 0, 0, p[n] - Sum[Binomial[n, j] p[n-j] a[j] j, {j, n-1}]/n];
    a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Sep 24 2019