A323859 Number of binary toroidal necklaces of size n.
1, 2, 6, 8, 19, 16, 56, 40, 152, 184, 432, 376, 2132, 1264, 4728, 8768, 20688, 15424, 87656, 55192, 315128, 399520, 762984, 729448, 5595408, 4026576, 10325712, 19884504, 57527804, 37025584, 286340544, 138547336, 805335364, 1041204704, 2021176512, 3926827328
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(4) = 19 binary toroidal necklaces: [0 0 0 0] [0 0 0 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] [1 1 1 1] . [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1] [0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1] . [0] [0] [0] [0] [0] [1] [0] [0] [0] [1] [1] [1] [0] [0] [1] [0] [1] [1] [0] [1] [1] [1] [1] [1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Programs
-
Mathematica
matcyc[m_]:=Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; Table[If[n==0,1,Length[Union[First/@matcyc/@Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n])]]],{n,0,10}]
-
PARI
U(n, m, k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d)))) a(n) = if(n<1, n==0, sumdiv(n, d, U(n/d, d, 2))) \\ Andrew Howroyd, Jan 24 2023
Formula
a(n) = (1/n) * Sum_{d|n} Sum_{e|d, f|(n/d)} phi(e) * phi(f) * 2^(n/lcm(d,n/d)). [Ethier]
Comments