A323862 Table read by antidiagonals where A(n,k) is the number of n X k binary arrays in which both the sequence of rows and the sequence of columns are (independently) aperiodic.
2, 2, 2, 6, 10, 6, 12, 54, 54, 12, 30, 228, 498, 228, 30, 54, 990, 4020, 4020, 990, 54, 126, 3966, 32730, 65040, 32730, 3966, 126, 240, 16254, 261522, 1047540, 1047540, 261522, 16254, 240, 504, 65040, 2097018, 16768860, 33554370, 16768860, 2097018, 65040, 504
Offset: 1
Examples
Array begins: 2 2 6 12 30 2 10 54 228 990 6 54 498 4020 32730 12 228 4020 65040 1047540 30 990 32730 1047540 33554370
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
nn=5; a[n_,k_]:=Sum[MoebiusMu[d]*MoebiusMu[e]*2^(n/d*k/e),{d,Divisors[n]},{e,Divisors[k]}]; Table[a[n-k,k],{n,nn},{k,n-1}]
-
PARI
A(n,k) = {sumdiv(n, d, sumdiv(k,e, moebius(d) * moebius(e) * 2^((n/d) * (k/e))))} \\ Andrew Howroyd, Jan 19 2023
Formula
A(n,k) = Sum_{d|n, e|k} mu(d) * mu(e) * 2^((n/d) * (k/e)).
Comments