A323863 Number of n X n aperiodic binary arrays.
1, 2, 8, 486, 64800, 33554250, 68718675672, 562949953420302, 18446744060824780800, 2417851639229257812542976, 1267650600228226023797043513000, 2658455991569831745807614120560664598, 22300745198530623141521551172073990303938400
Offset: 0
Keywords
Examples
The a(2) = 8 arrays are: [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1] [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0] Note that the following are not aperiodic even though their row and column sequences are (independently) aperiodic: [1 0] [0 1] [0 1] [1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; Table[Length[Select[(Partition[#,n]&)/@Tuples[{0,1},n^2],apermatQ]],{n,4}]
Formula
a(n) = 2^(n^2) - (n+1)*2^n + 2*n if n is prime. - Robert Israel, Feb 04 2019
a(n) = n^2 * A323872(n). - Andrew Howroyd, Aug 21 2019
Extensions
a(5) from Robert Israel, Feb 04 2019
a(6)-a(7) from Giovanni Resta, Feb 05 2019
Terms a(8) and beyond from Andrew Howroyd, Aug 21 2019
Comments