A323870 Number of toroidal necklaces of size n whose entries cover an initial interval of positive integers.
1, 4, 10, 61, 218, 3136, 13514, 272998, 2362439, 40899248, 295024106, 14045787790, 81055130522, 3040383719360, 61408850927732, 1661142088494553, 15337737297545402, 1128511554421317128, 9768588138876674858, 803306338873366385030, 15452347618762680757428
Offset: 1
Keywords
Examples
The a(3) = 10 toroidal necklaces: [1 2 3] [1 3 2] [1 2 2] [1 1 2] [1 1 1] . [1] [1] [1] [1] [1] [2] [3] [2] [1] [1] [3] [2] [2] [2] [1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[Length[Select[nrmmats[n],neckmatQ]],{n,6}]
-
PARI
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d)))); R(v)={sum(n=1, #v, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*v[k]))} a(n)={if(n < 1, n==0, R(vector(n, k, sumdiv(n, d, U(d, n/d, k))) ))} \\ Andrew Howroyd, Aug 18 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Aug 18 2019
Comments