cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323870 Number of toroidal necklaces of size n whose entries cover an initial interval of positive integers.

Original entry on oeis.org

1, 4, 10, 61, 218, 3136, 13514, 272998, 2362439, 40899248, 295024106, 14045787790, 81055130522, 3040383719360, 61408850927732, 1661142088494553, 15337737297545402, 1128511554421317128, 9768588138876674858, 803306338873366385030, 15452347618762680757428
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. Alternatively, a toroidal necklace is a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns.

Examples

			The a(3) = 10 toroidal necklaces:
  [1 2 3] [1 3 2] [1 2 2] [1 1 2] [1 1 1]
.
  [1] [1] [1] [1] [1]
  [2] [3] [2] [1] [1]
  [3] [2] [2] [2] [1]
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[nrmmats[n],neckmatQ]],{n,6}]
  • PARI
    U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))));
    R(v)={sum(n=1, #v, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*v[k]))}
    a(n)={if(n < 1, n==0, R(vector(n, k, sumdiv(n, d, U(d, n/d, k))) ))} \\ Andrew Howroyd, Aug 18 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Aug 18 2019