A323871 Number of aperiodic toroidal necklaces of size n whose entries cover an initial interval of positive integers.
1, 2, 8, 53, 216, 3112, 13512, 272844, 2362412, 40898808, 295024104, 14045779864, 81055130520, 3040383692328, 61408850927280, 1661142087743940, 15337737297545400, 1128511554416582908, 9768588138876674856, 803306338873264137240, 15452347618762680730384
Offset: 1
Keywords
Examples
The a(3) = 8 aperiodic toroidal necklaces: [1 2 3] [1 3 2] [1 2 2] [1 1 2] . [1] [1] [1] [1] [2] [3] [2] [1] [3] [2] [2] [2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Crossrefs
Programs
-
GAP
List([1..30], A323871); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}]; apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[Length[Select[nrmmats[n],neckmatQ[#]&&apermatQ[#]&]],{n,6}]
Extensions
Terms a(9) and beyond from Andrew Howroyd, Aug 21 2019
Comments