A323872 Number of n X n aperiodic binary toroidal necklaces.
1, 2, 2, 54, 4050, 1342170, 1908852102, 11488774559598, 288230375950387200, 29850020237398244599296, 12676506002282260237970435130, 21970710674130840874443091905460038, 154866286100907105149455216472736043777350, 4427744605404865645682169434028029029963535277450
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(2) = 2 aperiodic necklaces: [0 0] [0 1] [0 1] [1 1] Inequivalent representatives of the a(3) = 54 aperiodic necklaces: 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 011 001 010 011 100 101 110 111 . 000 000 000 000 000 000 000 000 000 011 011 011 011 011 011 011 111 111 001 010 011 100 101 110 111 001 011 . 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 011 100 101 110 111 011 101 110 . 001 001 001 001 001 001 001 001 001 010 011 011 011 011 011 100 100 100 111 010 011 101 110 111 011 110 111 . 001 001 001 001 001 001 001 001 001 101 101 101 101 110 110 110 110 111 011 101 110 111 011 101 110 111 011 . 001 001 001 011 011 011 011 011 011 111 111 111 011 011 011 101 110 111 101 110 111 101 110 111 111 111 111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[Length[Select[(Partition[#,n]&)/@Tuples[{0,1},n^2],And[apermatQ[#],neckmatQ[#]]&]],{n,4}]
Extensions
Terms a(5) and beyond from Andrew Howroyd, Aug 21 2019
Comments