cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323880 Number of divisors d > 1 of n such that A003415(d) divides n, where A003415 gives the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2019

Keywords

Crossrefs

Cf. A003415.
Cf. also A173441, A323878, A323879.

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A323880(n) = sumdiv(n,d,(d>1)&&!(n%A003415(d)));

Formula

a(n) = Sum_{d|n, d>1} [A003415(d)|n], where [ ] is the Iverson bracket, and A003415 gives the arithmetic derivative of n.