A323917 Numbers k with exactly two distinct prime divisors and such that cototient(k) is square, where k = p^(2s+1) * q^(2t+1) with s,t >=0, p, q primes and p + q - 1 = M^2.
6, 21, 24, 54, 69, 96, 133, 141, 189, 216, 237, 301, 384, 481, 486, 501, 589, 621, 669, 781, 864, 1029, 1077, 1141, 1269, 1317, 1357, 1417, 1536, 1537, 1701, 1944, 1957, 1981, 2041, 2133, 2181, 2517, 2869, 3261, 3397, 3456, 3601, 3661, 3669, 4101, 4309, 4333, 4374, 4509
Offset: 1
Keywords
Examples
Perfect number 6 = 2 * 3 and cototient(6) = 2^2. 781 = 11 * 71 and cototient(781) = 11 + 71 - 1 = 9^2. 864 = 2^5 * 3^3 and cototient(864)= (2^2 * 3^1 * 2)^2 = 24^2.
Programs
-
PARI
isok(n) = (omega(n)==2) && issquare(n - eulerphi(n)) && ((factor(n)[1,2] % 2) == (factor(n)[2,2] % 2)); \\ Michel Marcus, Feb 10 2019
Formula
cototient(p*q) = p + q - 1 = M^2 for primitive terms.
cototient(k) = (p^s * q^t * M)^2 with k as in the name of this sequence.
Comments