A323939 Number of unbranched tri-4-catafusenes under the symmetry point group C_{2v} as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).
0, 2, 5, 10, 22, 28, 65, 60, 172, 110, 461, 182, 1314, 280, 3977, 408, 12504, 570, 40021, 770, 128814, 1012, 414481, 1300, 1330052, 1638, 4253341, 2030, 13553978, 2480, 43049433, 2992, 136317872, 3570, 430471077, 4218, 1355976262, 4940, 4261630689, 5740, 13366013020, 6622
Offset: 3
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular Structure 376 (Issues 1-3) (1996), 495-505. See Table 1 (p. 500).
- Eric Weisstein's World of Mathematics, Fusene.
- Wikipedia, Molecular symmetry.
- Wikipedia, Point groups in three dimensions.
- Wikipedia, Polyhex (mathematics).
- Wikipedia, Schoenflies notation.
- Index entries for linear recurrences with constant coefficients, signature (2,7,-16,-14,44,2,-48,15,18,-9).
Programs
-
Mathematica
a[n_] := (1/24) (3((-1)^n - 1) (n - 1) + 2 n (n - 1) (n - 2)+ ((-1)^(n + 1) + 1) (-3n + 3^((n - 3)/2) (n + 3) + 3)); a /@ Range[3, 44] (* Jean-François Alcover, Oct 24 2019 *)
-
PARI
concat(0, Vec(x^4*(2 + x - 14*x^2 - x^3 + 22*x^4 - 3*x^5 + 2*x^6 - x^7) / ((1 - x)^4*(1 + x)^2*(1 - 3*x^2)^2) + O(x^40))) \\ Colin Barker, May 30 2019
Formula
From Petros Hadjicostas, May 26 2019: (Start)
a(n) = L(n) + C(n) for n >= 3, where L(n) = (1/2)*binomial(n, 3) - (1/8)*(1-(-1)^n)*(n-1) and C(n) = (1/24)*(1 - (-1)^n)*((n + 3)*3^((n-3)/2) - 3*(n-1)).
a(2*m) = binomial(2*m, 3)/2 = A006331(m - 1) for m >= 2, and a(2*m + 1) = binomial(2*m + 1, 3)/2 + (m + 2)*3^m/18 - m for m >= 1.
(End)
From Colin Barker, May 28 2019: (Start)
G.f.: x^4*(2 + x - 14*x^2 - x^3 + 22*x^4 - 3*x^5 + 2*x^6 - x^7) / ((1 - x)^4*(1 + x)^2*(1 - 3*x^2)^2).
a(n) = 2*a(n-1) + 7*a(n-2) - 16*a(n-3) - 14*a(n-4) + 44*a(n-5) + 2*a(n-6) - 48*a(n-7) + 15*a(n-8) + 18*a(n-9) - 9*a(n-10) for n>12.
(End)
Extensions
Name edited by Petros Hadjicostas, May 26 2019
More terms from Petros Hadjicostas, May 26 2019
Comments