cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323940 Number of nonisomorphic systems (isomers) for the unsymmetrical schemes (group C_s) for unbranched tri-4-catafusenes as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).

Original entry on oeis.org

0, 1, 8, 52, 244, 1093, 4490, 17952, 69304, 262385, 973916, 3562532, 12856716, 45880933, 162085694, 567578784, 1971766704, 6801381633, 23309759728, 79421199860, 269160256356, 907726205221, 3047449152562, 10188384019072, 33930769372904
Offset: 3

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Comments

See the comments of sequences A323939, A323941, and A323942 for explanations. - Petros Hadjicostas, May 26 2019

Crossrefs

Programs

  • Maple
    # Calculates a(r) = AA(r), where r = n is the number of hexagons.
    # Crude numbers:
    JJ := proc(i) sum(binomial(j + 1, 3)*binomial(i - 2, j - 1)*2^(i - 1 - j), j = 1 .. i - 1); end proc;
    # Linearly annelated systems of D_{2h} symmetry:
    DD := proc(r) 1/4*(1 - (-1)^r)*(r - 1); end proc;
    # Linearly annelated systems of C_{2v} symmetry:
    LL := proc(r) 1/2*binomial(r, 3) - (1/8 - 1/8*(-1)^r)*(r - 1); end proc;
    # Centrosymmetrical (C_{2h}) systems:
    CC := proc(n) 1/24*(1 - (-1)^n)*((3 + n)*3^(1/2*n - 3/2) - 3*n + 3); end proc;
    # Total mirror-symmetrical (C_{2v}) systems:
    MM := proc(n) CC(n) + LL(n); end proc;
    # Unsymmetrical (C_s) systems:
    AA := proc(r) 1/4*(JJ(r) - DD(r) - 2*CC(r) - 2*MM(r)); end proc;
    # Generate sequence:
    for m from 3 to 100 do AA(m); end do; # Petros Hadjicostas, May 26 2019
  • Mathematica
    LinearRecurrence[{14, -71, 116, 259, -1246, 1013, 2520, -5187, 594, 5931, -4428, -1215, 2430, -729}, {0, 1, 8, 52, 244, 1093, 4490, 17952, 69304, 262385, 973916, 3562532, 12856716, 45880933}, 100] (* from the g.f., Georg Fischer, Nov 07 2019 *)

Formula

a(n) = (1/8) * (1 - (-1)^n) * ((n - 1) - (n + 3) * 3^((n - 5)/2)) + (1/8) * (n^2 + 11 * n + 12) * (n - 2) * 3^(n - 6) - (1/4) * binomial(n, 3) for n >= 3. - Petros Hadjicostas, May 26 2019
G.f.: x^4*(1 -6*x +11*x^2 -32*x^3 +182*x^4 -346*x^5 -122*x^6 +950*x^7 -831*x^8 +336*x^9 -297*x^10 +90*x^11) / ( (1+x)^2*(3*x^2-1)^2*(3*x-1)^4*(x-1)^4 ). - R. J. Mathar, Jul 25 2019

Extensions

Name edited by Petros Hadjicostas, May 26 2019
More terms using various equations in Cyvin et al. (1996) from Petros Hadjicostas, May 26 2019