A323943 Trapezoidal matrix T(n,k) (n>=1, 1<=k<=n+2) read by rows, arising in enumeration of unbranched k-4-catafusenes.
1, 2, 1, 3, 7, 5, 1, 9, 24, 22, 8, 1, 27, 81, 90, 46, 11, 1, 81, 270, 351, 228, 79, 14, 1, 243, 891, 1323, 1035, 465, 121, 17, 1, 729, 2916, 4860, 4428, 2430, 828, 172, 20, 1, 2187, 9477, 17496, 18144, 11718, 4914, 1344, 232, 23, 1, 6561, 30618, 61965, 71928, 53298, 26460, 8946, 2040, 301, 26, 1, 19683
Offset: 1
Examples
Matrix begins: 1, 2, 1, 3, 7, 5, 1, 9, 24, 22, 8, 1, 27, 81, 90, 46, 11, 1, 81, 270, 351, 228, 79, 14, 1, ...
Links
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of molecular structure 376.1-3 (1996): 495-505. See Section 7.3.
Crossrefs
Programs
-
Maple
A323943 := proc(n,k) option remember; if n = 1 then if k>=1 and k<=3 then op(k,[1,2,1]) ; else 0; end if; else 3*procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: seq(seq(A323943(n,k),k=1..n+2),n=1..12) ; # R. J. Mathar, May 08 2019
-
Mathematica
T[n_, k_] := T[n, k] = If[n == 1, If[k >= 1 && k <= 3, {1, 2, 1}[[k]], 0], 3*T[n - 1, k] + T[n - 1, k - 1]]; Table[Table[T[n, k], {k, 1, n + 2}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 08 2023, after R. J. Mathar *)
Formula
T(1,1)=T(1,3)=1, T(1,2)=2; thereafter T(n+1,k) = 3*T(n,k)+T(n,k-1).
Comments