cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323943 Trapezoidal matrix T(n,k) (n>=1, 1<=k<=n+2) read by rows, arising in enumeration of unbranched k-4-catafusenes.

Original entry on oeis.org

1, 2, 1, 3, 7, 5, 1, 9, 24, 22, 8, 1, 27, 81, 90, 46, 11, 1, 81, 270, 351, 228, 79, 14, 1, 243, 891, 1323, 1035, 465, 121, 17, 1, 729, 2916, 4860, 4428, 2430, 828, 172, 20, 1, 2187, 9477, 17496, 18144, 11718, 4914, 1344, 232, 23, 1, 6561, 30618, 61965, 71928, 53298, 26460, 8946, 2040, 301, 26, 1, 19683
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Comments

Rows sums are powers of 4.

Examples

			Matrix begins:
1, 2, 1,
3, 7, 5, 1,
9, 24, 22, 8, 1,
27, 81, 90, 46, 11, 1,
81, 270, 351, 228, 79, 14, 1,
...
		

Crossrefs

Cf. A024462 (reversed rows).
Cf. A000244 (column 1), A038765 (column 2), A081892 (column 3)

Programs

  • Maple
    A323943 := proc(n,k)
        option remember;
        if n = 1 then
            if k>=1 and k<=3 then
                op(k,[1,2,1]) ;
            else
                0;
            end if;
        else
            3*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq(A323943(n,k),k=1..n+2),n=1..12) ; # R. J. Mathar, May 08 2019
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1, If[k >= 1 && k <= 3, {1, 2, 1}[[k]], 0], 3*T[n - 1, k] + T[n - 1, k - 1]];
    Table[Table[T[n, k], {k, 1, n + 2}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 08 2023, after R. J. Mathar *)

Formula

T(1,1)=T(1,3)=1, T(1,2)=2; thereafter T(n+1,k) = 3*T(n,k)+T(n,k-1).