cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306357 Number of nonempty subsets of {1, ..., n} containing no three cyclically successive elements.

Original entry on oeis.org

0, 1, 3, 6, 10, 20, 38, 70, 130, 240, 442, 814, 1498, 2756, 5070, 9326, 17154, 31552, 58034, 106742, 196330, 361108, 664182, 1221622, 2246914, 4132720, 7601258, 13980894, 25714874, 47297028, 86992798, 160004702, 294294530, 541292032, 995591266, 1831177830
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Comments

Cyclically successive means 1 is a successor of n.
Set partitions using these subsets are counted by A323949.

Examples

			The a(1) = 1 through a(5) = 20 stable subsets:
  {1}  {1}    {1}    {1}    {1}
       {2}    {2}    {2}    {2}
       {1,2}  {3}    {3}    {3}
              {1,2}  {4}    {4}
              {1,3}  {1,2}  {5}
              {2,3}  {1,3}  {1,2}
                     {1,4}  {1,3}
                     {2,3}  {1,4}
                     {2,4}  {1,5}
                     {3,4}  {2,3}
                            {2,4}
                            {2,5}
                            {3,4}
                            {3,5}
                            {4,5}
                            {1,2,4}
                            {1,3,4}
                            {1,3,5}
                            {2,3,5}
                            {2,4,5}
		

Crossrefs

Programs

  • Mathematica
    stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&];
    Table[Length[stabsubs[Partition[Range[n],3,1,1]]],{n,15}]

Formula

For n >= 3 we have a(n) = A001644(n) - 1.
From Chai Wah Wu, Jan 06 2020: (Start)
a(n) = 2*a(n-1) - a(n-4) for n > 6.
G.f.: x*(x^5 + x^4 - 2*x^3 + x + 1)/(x^4 - 2*x + 1). (End)

A323955 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} with no block containing k cyclically successive vertices, n >= 1, 2 <= k <= n + 1.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 4, 10, 14, 15, 11, 36, 46, 51, 52, 41, 145, 184, 196, 202, 203, 162, 631, 806, 855, 869, 876, 877, 715, 3015, 3847, 4059, 4115, 4131, 4139, 4140, 3425, 15563, 19805, 20813, 21056, 21119, 21137, 21146, 21147, 17722, 86144, 109339, 114469
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Comments

Cyclically successive means 1 is a successor of n.

Examples

			Triangle begins:
    1
    1    2
    1    4    5
    4   10   14   15
   11   36   46   51   52
   41  145  184  196  202  203
  162  631  806  855  869  876  877
  715 3015 3847 4059 4115 4131 4139 4140
Row 4 counts the following partitions:
  {{13}{24}}      {{12}{34}}      {{1}{234}}      {{1234}}
  {{1}{24}{3}}    {{13}{24}}      {{12}{34}}      {{1}{234}}
  {{13}{2}{4}}    {{14}{23}}      {{123}{4}}      {{12}{34}}
  {{1}{2}{3}{4}}  {{1}{2}{34}}    {{124}{3}}      {{123}{4}}
                  {{1}{23}{4}}    {{13}{24}}      {{124}{3}}
                  {{12}{3}{4}}    {{134}{2}}      {{13}{24}}
                  {{1}{24}{3}}    {{14}{23}}      {{134}{2}}
                  {{13}{2}{4}}    {{1}{2}{34}}    {{14}{23}}
                  {{14}{2}{3}}    {{1}{23}{4}}    {{1}{2}{34}}
                  {{1}{2}{3}{4}}  {{12}{3}{4}}    {{1}{23}{4}}
                                  {{1}{24}{3}}    {{12}{3}{4}}
                                  {{13}{2}{4}}    {{1}{24}{3}}
                                  {{14}{2}{3}}    {{13}{2}{4}}
                                  {{1}{2}{3}{4}}  {{14}{2}{3}}
                                                  {{1}{2}{3}{4}}
		

Crossrefs

First column (k = 2) is A000296. Second column (k = 3) is A323949. Rightmost terms are A000110. Second to rightmost terms are A058692.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],k,1,1],Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&],Range[n]]],{n,7},{k,2,n+1}]
Showing 1-2 of 2 results.