A306357
Number of nonempty subsets of {1, ..., n} containing no three cyclically successive elements.
Original entry on oeis.org
0, 1, 3, 6, 10, 20, 38, 70, 130, 240, 442, 814, 1498, 2756, 5070, 9326, 17154, 31552, 58034, 106742, 196330, 361108, 664182, 1221622, 2246914, 4132720, 7601258, 13980894, 25714874, 47297028, 86992798, 160004702, 294294530, 541292032, 995591266, 1831177830
Offset: 0
The a(1) = 1 through a(5) = 20 stable subsets:
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {3} {3} {3}
{1,2} {4} {4}
{1,3} {1,2} {5}
{2,3} {1,3} {1,2}
{1,4} {1,3}
{2,3} {1,4}
{2,4} {1,5}
{3,4} {2,3}
{2,4}
{2,5}
{3,4}
{3,5}
{4,5}
{1,2,4}
{1,3,4}
{1,3,5}
{2,3,5}
{2,4,5}
-
stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&];
Table[Length[stabsubs[Partition[Range[n],3,1,1]]],{n,15}]
A323955
Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} with no block containing k cyclically successive vertices, n >= 1, 2 <= k <= n + 1.
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 4, 10, 14, 15, 11, 36, 46, 51, 52, 41, 145, 184, 196, 202, 203, 162, 631, 806, 855, 869, 876, 877, 715, 3015, 3847, 4059, 4115, 4131, 4139, 4140, 3425, 15563, 19805, 20813, 21056, 21119, 21137, 21146, 21147, 17722, 86144, 109339, 114469
Offset: 1
Triangle begins:
1
1 2
1 4 5
4 10 14 15
11 36 46 51 52
41 145 184 196 202 203
162 631 806 855 869 876 877
715 3015 3847 4059 4115 4131 4139 4140
Row 4 counts the following partitions:
{{13}{24}} {{12}{34}} {{1}{234}} {{1234}}
{{1}{24}{3}} {{13}{24}} {{12}{34}} {{1}{234}}
{{13}{2}{4}} {{14}{23}} {{123}{4}} {{12}{34}}
{{1}{2}{3}{4}} {{1}{2}{34}} {{124}{3}} {{123}{4}}
{{1}{23}{4}} {{13}{24}} {{124}{3}}
{{12}{3}{4}} {{134}{2}} {{13}{24}}
{{1}{24}{3}} {{14}{23}} {{134}{2}}
{{13}{2}{4}} {{1}{2}{34}} {{14}{23}}
{{14}{2}{3}} {{1}{23}{4}} {{1}{2}{34}}
{{1}{2}{3}{4}} {{12}{3}{4}} {{1}{23}{4}}
{{1}{24}{3}} {{12}{3}{4}}
{{13}{2}{4}} {{1}{24}{3}}
{{14}{2}{3}} {{13}{2}{4}}
{{1}{2}{3}{4}} {{14}{2}{3}}
{{1}{2}{3}{4}}
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],k,1,1],Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&],Range[n]]],{n,7},{k,2,n+1}]
Showing 1-2 of 2 results.
Comments