cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323950 Number of ways to split an n-cycle into connected subgraphs, none having exactly two vertices.

Original entry on oeis.org

1, 1, 1, 2, 6, 12, 23, 44, 82, 149, 267, 475, 841, 1484, 2613, 4595, 8074, 14180, 24896, 43702, 76705, 134622, 236260, 414623, 727629, 1276917, 2240851, 3932438, 6900967, 12110373, 21252244, 37295110, 65448378, 114853920, 201554603, 353703696, 620706742
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			The a(1) = 1 through a(5) = 12 partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1234}}        {{12345}}
                   {{1}{2}{3}}  {{1}{234}}      {{1}{2345}}
                                {{123}{4}}      {{1234}{5}}
                                {{124}{3}}      {{1235}{4}}
                                {{134}{2}}      {{1245}{3}}
                                {{1}{2}{3}{4}}  {{1345}{2}}
                                                {{1}{2}{345}}
                                                {{1}{234}{5}}
                                                {{123}{4}{5}}
                                                {{125}{3}{4}}
                                                {{145}{2}{3}}
                                                {{1}{2}{3}{4}{5}}
		

Crossrefs

Programs

  • Mathematica
    cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[cyceds[n,2],Range[n]]],{n,15}]

Formula

G.f.: (x^7-3*x^6+3*x^5-2*x^4+x^3-3*x^2+3*x-1)/((x^3-x^2+2*x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019

Extensions

More terms from Alois P. Heinz, Feb 10 2019