A323950 Number of ways to split an n-cycle into connected subgraphs, none having exactly two vertices.
1, 1, 1, 2, 6, 12, 23, 44, 82, 149, 267, 475, 841, 1484, 2613, 4595, 8074, 14180, 24896, 43702, 76705, 134622, 236260, 414623, 727629, 1276917, 2240851, 3932438, 6900967, 12110373, 21252244, 37295110, 65448378, 114853920, 201554603, 353703696, 620706742
Offset: 0
Examples
The a(1) = 1 through a(5) = 12 partitions: {{1}} {{1}{2}} {{123}} {{1234}} {{12345}} {{1}{2}{3}} {{1}{234}} {{1}{2345}} {{123}{4}} {{1234}{5}} {{124}{3}} {{1235}{4}} {{134}{2}} {{1245}{3}} {{1}{2}{3}{4}} {{1345}{2}} {{1}{2}{345}} {{1}{234}{5}} {{123}{4}{5}} {{125}{3}{4}} {{145}{2}{3}} {{1}{2}{3}{4}{5}}
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-3,1).
Crossrefs
Programs
-
Mathematica
cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[cyceds[n,2],Range[n]]],{n,15}]
Formula
G.f.: (x^7-3*x^6+3*x^5-2*x^4+x^3-3*x^2+3*x-1)/((x^3-x^2+2*x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019
Extensions
More terms from Alois P. Heinz, Feb 10 2019