A323951 Number of ways to split an n-cycle into connected subgraphs, all having at least three vertices.
1, 0, 0, 1, 1, 1, 4, 8, 13, 22, 36, 56, 86, 131, 197, 294, 437, 647, 955, 1407, 2070, 3042, 4467, 6556, 9618, 14106, 20684, 30325, 44455, 65164, 95515, 139997, 205189, 300733, 440760, 645980, 946745, 1387538, 2033552, 2980332, 4367906, 6401495, 9381865, 13749810
Offset: 0
Examples
The a(3) = 1 through a(7) = 8 partitions: {{123}} {{1234}} {{12345}} {{123456}} {{1234567}} {{123}{456}} {{123}{4567}} {{126}{345}} {{1234}{567}} {{156}{234}} {{1237}{456}} {{1267}{345}} {{127}{3456}} {{1567}{234}} {{167}{2345}}
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-2,1).
Programs
-
Mathematica
cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[cycedsprop[n,2],Range[n]]],{n,15}]
Formula
G.f.: (x^7-2*x^6+x^3-3*x^2+3*x-1)/((x^3+x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019
Extensions
More terms from Alois P. Heinz, Feb 10 2019