A323955 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} with no block containing k cyclically successive vertices, n >= 1, 2 <= k <= n + 1.
1, 1, 2, 1, 4, 5, 4, 10, 14, 15, 11, 36, 46, 51, 52, 41, 145, 184, 196, 202, 203, 162, 631, 806, 855, 869, 876, 877, 715, 3015, 3847, 4059, 4115, 4131, 4139, 4140, 3425, 15563, 19805, 20813, 21056, 21119, 21137, 21146, 21147, 17722, 86144, 109339, 114469
Offset: 1
Examples
Triangle begins: 1 1 2 1 4 5 4 10 14 15 11 36 46 51 52 41 145 184 196 202 203 162 631 806 855 869 876 877 715 3015 3847 4059 4115 4131 4139 4140 Row 4 counts the following partitions: {{13}{24}} {{12}{34}} {{1}{234}} {{1234}} {{1}{24}{3}} {{13}{24}} {{12}{34}} {{1}{234}} {{13}{2}{4}} {{14}{23}} {{123}{4}} {{12}{34}} {{1}{2}{3}{4}} {{1}{2}{34}} {{124}{3}} {{123}{4}} {{1}{23}{4}} {{13}{24}} {{124}{3}} {{12}{3}{4}} {{134}{2}} {{13}{24}} {{1}{24}{3}} {{14}{23}} {{134}{2}} {{13}{2}{4}} {{1}{2}{34}} {{14}{23}} {{14}{2}{3}} {{1}{23}{4}} {{1}{2}{34}} {{1}{2}{3}{4}} {{12}{3}{4}} {{1}{23}{4}} {{1}{24}{3}} {{12}{3}{4}} {{13}{2}{4}} {{1}{24}{3}} {{14}{2}{3}} {{13}{2}{4}} {{1}{2}{3}{4}} {{14}{2}{3}} {{1}{2}{3}{4}}
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],k,1,1],Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&],Range[n]]],{n,7},{k,2,n+1}]
Comments