A323967 Number of 3 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{3,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
1, 1, 4, 25, 94, 266, 632, 1332, 2570, 4631, 7900, 12883, 20230, 30760, 45488, 65654, 92754, 128573, 175220, 235165, 311278, 406870, 525736, 672200, 851162, 1068147, 1329356, 1641719, 2012950, 2451604, 2967136, 3569962, 4271522, 5084345, 6022116, 7099745
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Row (or column) 3 of array in A323846.
Programs
-
Maple
a:= n-> `if`(n=0, 1, 2+((((((n+12)*n+55)*n+120)*n-236)*n-312)*n)/360): seq(a(n), n=0..40);
Formula
G.f.: -(x^7-5*x^6+7*x^5+3*x^4-17*x^3+18*x^2-6*x+1)/(x-1)^7.
a(n) = 2+((((((n+12)*n+55)*n+120)*n-236)*n-312)*n)/360 for n > 0, a(0) = 1.