A323970 Number of 6 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{6,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
1, 10, 85, 632, 3423, 14795, 54219, 174844, 508484, 1357051, 3367166, 7846507, 17311702, 36401032, 73344164, 142259423, 266651159, 484610624, 856389171, 1475218962, 2482510921, 4088870385, 6602746625, 10468982846, 16320069070, 25043533065, 37869646820
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Row (or column) 6 of array in A323846.
Formula
G.f.: -(4*x^13 -47*x^12 +253*x^11 -822*x^10 +1788*x^9 -2728*x^8 +2958*x^7 -2253*x^6 +1145*x^5 -308*x^4 +21*x^3 +33*x^2 -3*x+1) / (x-1)^13.