A323972 Number of 8 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{8,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
1, 21, 259, 2570, 18546, 106067, 508484, 2117690, 7852836, 26400811, 81594028, 234380304, 631352789, 1606571023, 3885713191, 8979237218, 19912769178, 42540796862, 87841523926, 175820917355, 341996038445, 647926774508, 1197980968295, 2165529201795, 3833173915877
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Row (or column) 8 of array in A323846.
Formula
G.f.: -(6*x^17 -95*x^16 +707*x^15 -3278*x^14 +10588*x^13 -25239*x^12 +45878*x^11 -64775*x^10 +71619*x^9 -62024*x^8 +41650*x^7 -21151*x^6 +7977*x^5 -1820*x^4 +343*x^3 +38*x^2 +4*x+1) / (x-1)^17.