A324012 Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0
Examples
The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies: {{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}} {{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}} {{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}} {{147}{258}{36}} {{168}{249}{357}} {{157}{248}{36}} {{13}{258}{46}{79}} {{13}{24}{57}{68}} {{14}{258}{37}{69}} {{13}{25}{47}{68}} {{14}{28}{357}{69}} {{14}{26}{37}{58}} {{16}{258}{37}{49}} {{14}{27}{36}{58}} {{16}{28}{357}{49}} {{15}{26}{37}{48}} {{17}{258}{39}{46}} {{15}{27}{36}{48}} {{18}{29}{357}{46}} {{16}{24}{38}{57}} {{16}{25}{38}{47}} {{17}{28}{35}{46}}
Links
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn]; Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
Comments