A324014 Number of self-complementary set partitions of {1, ..., n} with no cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
1, 0, 1, 1, 2, 3, 9, 16, 43, 89, 250, 571, 1639
Offset: 0
Examples
The a(3) = 1 through a(6) = 9 self-complementary set partitions with no cyclical adjacencies: {{1}{2}{3}} {{13}{24}} {{14}{25}{3}} {{135}{246}} {{1}{2}{3}{4}} {{1}{24}{3}{5}} {{13}{25}{46}} {{1}{2}{3}{4}{5}} {{14}{25}{36}} {{1}{24}{35}{6}} {{13}{2}{46}{5}} {{14}{2}{36}{5}} {{15}{26}{3}{4}} {{1}{25}{3}{4}{6}} {{1}{2}{3}{4}{5}{6}}
Links
- David Callan, On conjugates for set partitions and integer compositions [math.CO].
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn]; Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
Comments