A124323
Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0
T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
1
0 1
1 0 1
1 3 0 1
4 4 6 0 1
11 20 10 10 0 1
41 66 60 20 15 0 1
162 287 231 140 35 21 0 1
715 1296 1148 616 280 56 28 0 1
3425 6435 5832 3444 1386 504 84 36 0 1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{12}{34}} {{123}{4}} {{1}{23}{4}}
{{13}{24}} {{124}{3}} {{12}{3}{4}}
{{14}{23}} {{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
{{13}{24}} {{1}{2}{34}} {{1}{234}} {{1234}}
{{1}{24}{3}} {{1}{23}{4}} {{12}{34}}
{{13}{2}{4}} {{12}{3}{4}} {{123}{4}}
{{1}{2}{3}{4}} {{14}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
A250104 is an essentially identical triangle, differing only in row 1.
Cf.
A000126,
A001610,
A032032,
A052841,
A066982,
A080107,
A169985,
A187784,
A324011,
A324014,
A324015.
-
G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
# Program from R. J. Mathar, Jan 22 2015:
A124323 := proc(n,k)
binomial(n,k)*A000296(n-k) ;
end proc:
-
Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)
A080107
Number of fixed points of permutation of SetPartitions under {1,2,...,n}->{n,n-1,...,1}. Number of symmetric arrangements of non-attacking rooks on upper half of n X n chessboard.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 31, 59, 164, 339, 999, 2210, 6841, 16033, 51790, 127643, 428131, 1103372, 3827967, 10269643, 36738144, 102225363, 376118747, 1082190554, 4086419601, 12126858113, 46910207114, 143268057587, 566845074703, 1778283994284, 7186474088735
Offset: 0
Of the set partitions of 4, the following 7 are invariant under 1->4, 2->3, 3->2, 4->1: {{1,2,3,4}}, {{1,2},{3,4}}, {{1,4},{2,3}}, {{1,3},{2,4}}, {{1},{2,3},{4}}, {{1,4},{2},{3}}, {{1},{2},{3},{4}}, so a(4)=7.
For a(4)=7, the row patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD (same as previous example). The loop patterns are AAAA, AAAB, AABB, AABC, ABAB, ABAC, and ABCD. - _Robert A. Russell_, Apr 23 2018
From _Gus Wiseman_, Feb 13 2019: (Start)
The a(1) = 1 through a(5) = 12 self-complementary set partitions:
{{1}} {{12}} {{123}} {{1234}} {{12345}}
{{1}{2}} {{13}{2}} {{12}{34}} {{1245}{3}}
{{1}{2}{3}} {{13}{24}} {{135}{24}}
{{14}{23}} {{15}{234}}
{{1}{23}{4}} {{1}{234}{5}}
{{14}{2}{3}} {{12}{3}{45}}
{{1}{2}{3}{4}} {{135}{2}{4}}
{{14}{25}{3}}
{{15}{24}{3}}
{{1}{24}{3}{5}}
{{15}{2}{3}{4}}
{{1}{2}{3}{4}{5}}
(End)
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 765).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 18.
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
- S. V. Pemmaraju and S. S. Skiena, The New Combinatorica, 2001.
- Frank Ruskey, Set Partitions
-
< Range[n, 1, -1]]; t= 1 + RankSetPartition /@ t; t= ToCycles[t]; t= Cases[t, {_Integer}]; Length[t], {n, 7}]
(* second program: *)
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[cc = CoefficientList[QB[n, q], q]; cc.Table[(-1)^(k+1), {k, 1, Length[cc]}], {n, 0, 30}] (* Jean-François Alcover, Feb 29 2016, after Paul D. Hanna *)
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n
colors containing exactly k different colors *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0],
k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
Table[Sum[Ach[n, k], {k, 0, n}], {n, 0, 30}] (* Robert A. Russell, Apr 23 2018 *)
x[n_] := x[n] = If[n < 2, n+1, 2x[n-1] + (n-1)x[n-2]]; (* A005425 *)
Table[Sum[StirlingS2[Ceiling[n/2], k] x[k-Mod[n, 2]], {k, 0, Ceiling[n/2]}],
{n, 0, 30}] (* Robert A. Russell, Apr 27 2018, after Knuth reference *)
A324011
Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
Offset: 0
The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
Cf.
A000110,
A000126,
A000296 (singletons allowed, or adjacencies allowed),
A001610,
A124323,
A169985,
A261139,
A324012,
A324014,
A324015.
-
Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A324012
Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0
The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies:
{{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}}
{{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}}
{{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}}
{{147}{258}{36}} {{168}{249}{357}}
{{157}{248}{36}} {{13}{258}{46}{79}}
{{13}{24}{57}{68}} {{14}{258}{37}{69}}
{{13}{25}{47}{68}} {{14}{28}{357}{69}}
{{14}{26}{37}{58}} {{16}{258}{37}{49}}
{{14}{27}{36}{58}} {{16}{28}{357}{49}}
{{15}{26}{37}{48}} {{17}{258}{39}{46}}
{{15}{27}{36}{48}} {{18}{29}{357}{46}}
{{16}{24}{38}{57}}
{{16}{25}{38}{47}}
{{17}{28}{35}{46}}
Cf.
A000110,
A000126,
A000296,
A001610,
A080107,
A169985,
A261139,
A306417 (all self-conjugate set partitions),
A324011 (self-complementarity not required),
A324013 (adjacencies allowed),
A324014 (singletons allowed),
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A324015
Number of nonempty subsets of {1, ..., n} containing no two cyclically successive elements.
Original entry on oeis.org
0, 1, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520, 87403802
Offset: 0
The a(6) = 17 stable subsets:
{1}, {2}, {3}, {4}, {5}, {6},
{1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {2,4,6}.
-
stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&];
Table[Length[stabsubs[Partition[Range[n],2,1,1]]],{n,0,10}]
Showing 1-5 of 5 results.
Comments