A324020 Total number of zeroless polydivisible numbers in base n.
1, 4, 9, 32, 45, 236, 330, 1108, 2157, 12740, 7713, 93710, 65602, 230342, 570128, 5007682, 2484863, 36896861, 16618196, 81481351, 266303823, 1991227852, 533069755, 7599786619, 13636829615, 35633175288, 43994413188, 796513902354, 121485971111, 5858898939564
Offset: 2
Examples
n | polydivisible numbers in base n | zeroless --+----------------------------------+--------------- 2 | [0, 1] | [1] | [10] | --+----------------------------------+--------------- 3 | [0, 1, 2] | [1, 2] | [11, 20, 22] | [11, 22] | [110, 200, 220] | | [1100, 2002, 2200] | | [11002, 20022] | | [110020, 200220] | --+----------------------------------+---------------- 4 | [0, 1, 2, 3] | [1, 2, 3] | [10, 12, 20, 22, 30, 32] | [12, 22, 32] | [102, 120, 123, 201, | [123, 222, 321] | 222, 300, 303, 321] | | [1020, 1200, 1230, 2010, | | 2220, 3000, 3030, 3210] | | [10202, 12001, 12303, 20102, | | 22203, 30002, 32103] | | [120012, 123030, 222030, 321030] | | [2220301] |
Links
- Wikipedia, Polydivisible number.
Programs
-
Ruby
def A(n) d = 0 a = (1..n - 1).map{|i| [i]} cnt = n - 1 while d < n - 2 d += 1 b = [] a.each{|i| (1..n - 1).each{|j| m = i.clone + [j] if (0..d).inject(0){|s, k| s + m[k] * n ** (d - k)} % (d + 1) == 0 b << m cnt += 1 end } } a = b end cnt end def A324020(n) (2..n).map{|i| A(i)} end p A324020(10)
Formula
a(n) = Sum_{k=1..n-1} A324019(n,k).
Extensions
a(20)-a(31) from Bert Dobbelaere, Sep 14 2019