cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324048 a(n) = A000203(n) - A083254(n) = n + sigma(n) - 2*phi(n).

Original entry on oeis.org

0, 3, 3, 7, 3, 14, 3, 15, 10, 20, 3, 32, 3, 26, 23, 31, 3, 45, 3, 46, 29, 38, 3, 68, 16, 44, 31, 60, 3, 86, 3, 63, 41, 56, 35, 103, 3, 62, 47, 98, 3, 114, 3, 88, 75, 74, 3, 140, 22, 103, 59, 102, 3, 138, 47, 128, 65, 92, 3, 196, 3, 98, 95, 127, 53, 170, 3, 130, 77, 166, 3, 219, 3, 116, 119, 144, 53, 198, 3, 202, 94, 128, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n + DivisorSigma[1, n] - 2 * EulerPhi[n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A083254(n) = (2*eulerphi(n)-n);
    A324048(n) = (sigma(n) - A083254(n));
    
  • PARI
    a(n) = {my(f = factor(n)); n + sigma(f) - 2*eulerphi(f);} \\ Amiram Eldar, Dec 04 2023

Formula

a(n) = A000203(n) - A083254(n) = n + A000203(n) - 2*A000010(n).
a(n) = A051612(n) + A051953(n).
a(n) = A297159(n) + 2*A001065(n).
Sum_{k=1..n} a(k) = (Pi^2/12 - 6/Pi^2 + 1/2) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 04 2023