cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324050 Numbers satisfying Korselt's criterion: squarefree numbers n such that for every prime divisor p of n, p-1 divides n-1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Comments

Numbers n such that A002322(n) divides n-1.
Numbers that satisfy Korselt's criterion (see Mathworld and Wikipedia-links).
Union of {1}, primes and Carmichael numbers, A002997.
Differs from A008578 for the first time at term a(104) = 561, which (being a composite) is the first Carmichael number present.

Crossrefs

Union of A008578 and A002997. Intersection of A005117 and A087441. Subsequence of A015919.
Cf. A002322.

Programs

  • Mathematica
    okQ[n_] := SquareFreeQ[n] && AllTrue[FactorInteger[n][[All, 1]], Divisible[n-1, #-1]&];
    {1} ~Join~ Select[Range[2, 1000], okQ] (* Jean-François Alcover, Oct 22 2019 *)
  • PARI
    isA324050(n) = if(1==n,1, my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); (1)); \\ After program Korselt in A002997
    for(n=1,561,if(isA324050(n), print1(n,", ")));
    
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    isA324050(n) = (0==((n-1)%A002322(n)));