cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324058 a(n) = A324121(A005940(1+n)) = gcd(A324054(n), A005940(1+n)*A106737(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 1, 1, 2, 2, 12, 4, 1, 3, 4, 1, 2, 8, 4, 6, 4, 24, 6, 12, 3, 3, 2, 1, 4, 24, 1, 3, 2, 4, 12, 56, 4, 48, 2, 10, 4, 16, 24, 24, 2, 18, 120, 4, 1, 3, 6, 1, 6, 12, 1, 3, 4, 4, 24, 8, 1, 3, 2, 1, 2, 2, 4, 12, 4, 48, 6, 8, 28, 8, 24, 112, 6, 24, 8, 2, 4, 16, 24, 336, 8, 96, 12, 120, 6, 24, 4, 6, 8, 720, 6, 36, 3, 3, 2, 21, 6, 36, 3, 15, 14, 6
Offset: 0

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2);
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324058(n) = gcd(A324054(n), A005940(1+n)*A106737(n));
    \\ Alternatively as:
    A324121(n) = gcd(sigma(n),n*numdiv(n));
    A324058(n) = A324121(A005940(1+n));

Formula

a(n) = A324121(A005940(1+n)) = gcd(A324054(n), A005940(1+n)*A106737(n)).