cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324160 Number of zero-containing nonnegative integers <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11
Offset: 0

Views

Author

Hieronymus Fischer, Feb 15 2019

Keywords

Comments

This sequence represents the counting function of A011540.
n = n_max = 701 is the greatest number such that a(n) <= pi(n) [the number of primes <= n]. Thus, for all indices n > n_max, we have a(n) > pi(n). For n = n_max the number of primes is pi(n) = 126.
n = n_min = 510 is the least number (> 2) such that a(n) >= pi(n) [the number of primes <= n]. Thus, for all indices 2 < n < n_min, we have a(n) < pi(n). For n = n_min the number of primes is pi(n) = 97.

Examples

			a(10) = 2, since there are two numbers <= 10 which contain a '0'-digit (0 and 10).
a(100) = 11.
a(10^3) = 182.
a(10^4) = 2621.
a(10^5) = 33572.
a(10^6) = 402131.
a(10^7) = 4619162
a(10^8) = 51572441.
a(10^9) = 564151952.
a(10^10) = 6077367551.
a(10^20) = 86322626358560955101.
a(10^50) = 99420200289176487252583981229013676068210129037751 = 9.9420200289176... *10^49
a(10^100) = 9.9997011842625...13575501*10^99.
a(10^1000) = 9.999999999999...564125755001*10^999
(here, the first 45 digits are 9's).
		

Crossrefs

Programs

  • PARI
    a(n) = 1 + sum(k=1, n, vecmin(digits(k)) == 0); \\ Michel Marcus, Mar 20 2019

Formula

With m := floor(log_10(n)); k := Max_{j | j = 1..m and (floor(n/10^j) mod 10)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/10^k)*10^k:
a(n) = 2 + Sum_{j = 1..m} floor((b(n,k+1)-1)/10^j)*9^(j-1), if k = 0 (valid for n > 9),
a(n) = 2 + n mod 10^k + Sum_{j = 1..m} floor((b(n,k)-1)/10^j)*9^(j-1), if k > 0 (valid for n > 0),
a(n) = 2 + n mod 10^k - ceiling(fract(n/10))*(1-ceiling(k/(m+1))) + Sum_{j = 1..m} floor((b(n,k)-1)/10^j)*9^(j-1) (all k, valid for n > 0).
a(n) + A324161(n) = n + 1
a(A011540(n)) = n.
A011540(a(n)) <= n, for n >= 0.
A011540(a(n)) = n, iff n is a zero-containing number.
a(10*n + k) <= 9*a(n) + n - 8, k = 0..9, equality holds for k = 9, and also, if n is a zerofree number (i.e., contains no '0'-digit).
a(10*A052382(n) + k) = 10*A052382(n) + 1 - 9*n, k = 0..9.
Values for special indices:
a(k*(10^n-1)/9 - j) = k*(8*10^n - 9*9^n + 1)/72 + 1, n > 0, k = 1..9, j = 0..k.
a(k*10^n - j) = k*(10^n - 9^n) + 1 - (9^n - 1)/8, n >= 0, k = 1..10, j = 1..10.
a(10^n) = 10^n + 2 - (9^(n+1) - 1)/8, n > 0.
a(k*10^n + j) = k*(10^n - 9^n) + j + 2 - (9^n - 1)/8, n > 0, k = 1..9, 0 <= j < (10^(n+1)-1)/9 - 10^n.
With: d := log_10(9) = 0.95424250943932...
Upper bound:
a(n) <= n + 2 - ((9*n + 10)^d - 1)/8,
equality holds for n = (10^k - 1)/9 - 1, k > 0.
Lower bound:
a(n) >= n + 2 - (9*(n + 1)^d - 1)/8,
equality holds for n = 10^k - 1, k >= 0.
Asymptotic behavior:
a(n) <= n + 2 + (1/8) - (9^d/8)*n^d*(1 + O(1/n)).
a(n) >= n + 2 + (1/8) - (9/8)*n^d*(1 + O(1/n))).
a(n) = n*(1 + O(n^(d-1)) = n*(1 + O(1/n^0.045757490...)).
Lower and upper limits:
lim inf (a(n) - n)/n^d = -9/8, for n -> infinity.
lim sup (a(n) - n)/n^d = -9^d/8 = -1.0173931195971..., for n -> infinity.
From Hieronymus Fischer, Apr 04 2019: (Start)
Formulas for general bases b > 2:
With m := floor(log_b(n)); k := Max_{j | j=1..m and (floor(n/b^j) mod b)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/b^k)*b^k:
a(n) = 2 + Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, valid for n > b-1;
a(n) = 2 + n mod b^k + Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, valid for n > 0;
a(n) = 2 + n mod b^k - ceiling(fract(n/b))*(1-ceiling(k/(m+1))) + Sum_{j=1..m} floor((b(n,k)-1)/b^j)* (b-1)^(j-1), all k, valid for n > 0.
Formula for base b = 2: a(n) = (n + 1 - floor(log_2(n + 1))).
With d := d(b) := log(b - 1)/log(b):
Upper bound (b = 10 for this sequence):
a(n) <= n + 2 - (((b - 1)*n + b)^d - 1)/(b - 2),
equality holds for n = (b^k - 1)/(b - 1) - 1, k > 0.
Lower bound (b = 10 for this sequence):
a(n) >= n + 2 - ((b - 1)*(n + 1)^d - 1)/(b - 2),
equality holds for n = b^k - 1, k >= 0.
Asymptotic behavior (b = 10 for this sequence):
a(n) = n*(1 + O(n^(d(b)-1)), for b > 2,
a(n) = n*(1 + O(log(n)/n)), for b = 2.
Lower and upper limits:
lim inf (a(n) - n)/n^d(b) = -(b - 1)/(b - 2), for n -> infinity, for b > 2.
lim sup (a(n) - n)/n^d(b) = -(b - 1)^d/(b - 2) for n -> infinity, for b > 2.
In case of b = 2:
lim (a(n) - n)/log(n) = -1/log(2), for n -> infinity.
(End)