cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324161 Number of zerofree nonnegative integers <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 81, 82, 83
Offset: 0

Views

Author

Hieronymus Fischer, Feb 15 2019

Keywords

Comments

This sequence represents the counting function of A052382 (for indices > 0). The offset is set to zero for compatibility with A324160.
For indices 1 < n < 10761677 we have a(n) > A324160(n), for all indices n > 20327615 we have a(n) < A324160(n), i.e., the number of zerofree numbers <= N is smaller than the number of zero containing numbers <= N for sufficiently large N.
There are exactly 20 indices for which a(n) = A324160(n).
The greatest number n = n_max such that a(n) >= pi(n) [the number of primes <= n] is in the range 1.0075615552421*10^45 < n_max < 1.0075622026833*10^45 (see A324155). Thus, for all indices n > n_max, we have a(n) < pi(n). For n = n_max the number of primes is pi(n) = 9818959014098676479127822164411318257546629.
The least number n = n_min such that a(n) <= pi(n) [the number of primes <= n] is in the range 1.0953002073198*10^44 < n_min < 1.0953009588121*10^44 (see A324154). Thus, for all indices n < n_min, we have a(n) > pi(n). For n = n_min the number of primes is pi(n) = 1090995446010964053236424684934590917505180.
Differs from A028904 first at a(100)=90 <> A028904(100)=81. - R. J. Mathar, Mar 03 2020
Differs from A081600 first at a(101)=90 <> A081600(101)=91. - R. J. Mathar, Mar 03 2020

Examples

			a(10) = 9, since there are 9 numbers <= 10 which contain no '0'-digit (1, 2, 3, 4, 5, 6, 7, 8 and 9).
a(100) = 90.
a(10^3) = 819.
a(10^4) = 7380.
a(10^5) = 66429.
a(10^6) = 597870.
a(10^7) = 5380839
a(10^8) = 48427560.
a(10^9) = 435848049.
a(10^10) = 3922632450.
a(10^20) = 13677373641439044900.
a(10^50) = 579799710823512747416018770986323931789870962250 = 5.79799...*10^47.
a(10^100) = 2.9881573748536...68682786424500*10^95.
a(10^1000) = 1.96635515818798306...435874245000*10^954.
		

Crossrefs

Programs

  • Maple
    A324161 := proc(n)
        option remember;
        if n = 0 then
            0;
        else
            convert(convert(n,base,10),set) ;
            if 0 in % then
                procname(n-1) ;
            else
                1+procname(n-1) ;
            end if;
        end if;
    end proc: # R. J. Mathar, Mar 03 2020
  • PARI
    a(n) = sum(k=1, n, vecmin(digits(k)) != 0); \\ Michel Marcus, Mar 20 2019

Formula

With m := floor(log_10(n)); k := Max_{j | j=1..m and (floor(n/10^j) mod 10)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k) := floor(n/10^k)*10^k:
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/10^j)*9^(j-1), if k = 0 (valid for n > 9),
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/10^j)*9^(j-1), if k > 0 (valid for n > 0),
a(n) = b(n,k) - 1 + ceiling(fract(n/10))*(1-ceiling(k/(m+1))) - Sum_{j=1..m} floor((b(n,k)-1)/10^j)*9^(j-1) (all k, valid for n > 0).
a(n) + A324160(n) = n + 1.
a(A052382(n)) = n.
A052382(a(n)) <= n, for n > 0.
A052382(a(n)) = n, iff n is a zerofree number.
a(10*n + k) >= 9*a(n) + k, k=0..9, equality holds, if n is a zerofree number (i.e., contains no '0'-digit).
a(10*A052382(n) + k) = 9*n + k, k=0..9, n > 0.
Values for special indices:
a(k*(10^n - 1)/9 - j) = k*(9^n - 1)/8 - j, n > 0, k = 1, 2, ... 9, j = 0, 1, 2, ... k.
a(k*10^n - j) = k*9^n + (9^n - 1)/8 - j, n >= 0, k = 1, 2, ... 10, j = 1, 2, ... 10.
a(k*10^n + j) = k*9^n + (9^n - 1)/8 - 1, n > 0, k = 1, 2, ... 10, j = 0, 1, 2, ... (10^(n+1)-1)/9 - 10^n - 1.
With: d := log_10(9) = 0.95424250943932...
Upper bound:
a(n) <= (9*(n+1)^d - 1)/8 - 1,
equality holds for n = 10^k - 1, k >= 0.
Lower bound:
a(n) >= ((9*n + 10)^d - 1)/8 - 1,
equality holds for n = (10^k - 1)/9 - 1, k > 0.
Asymptotic behavior:
a(n) <= (9/8)*n^d*(1 + O(1/n)) - 9/8.
a(n) >= (9^d/8)*n^d*(1 + O(1/n)) - 9/8.
a(n) = O(n^d) = O(n^0.954242509...).
Lower and upper limits:
lim inf a(n)/n^d = 9^d/8 = 1.0173931195971..., for n -> infinity.
lim sup a(n)/n^d = 9/8, for n -> infinity.
From Hieronymus Fischer, Apr 04 2019: (Start)
Formulas for general bases b > 2:
With m := floor(log_b(n)); k := Max_{j | j=1..m and (floor(n/b^j) mod b)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/b^k)*b^k:
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, valid for n > b-1;
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, valid for n > 0;
a(n) = b(n,k) - 1 + ceiling(fract(n/b))*(1-ceiling(k/(m+1))) - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), (all k, valid for n > 0).
Formula for base b = 2: a(n) = floor(log_2(n + 1)).
With d := d(b) := log(b - 1)/log(b).
Upper bound (b = 10 for this sequence):
a(n) <= ((b - 1)*(n + 1)^d - 1)/(b - 2) - 1,
equality holds for n = b^k - 1, k >= 0.
Lower bound (b = 10 for this sequence):
a(n) >= (((b - 1)*n + b)^d - 1)/(b - 2) - 1,
equality holds for n = (b^k - 1)/(b - 1) - 1, k > 0.
Asymptotic behavior (b = 10 for this sequence):
a(n) = O(n^d(b)), for b > 2,
a(n) = O(log(n)), for b = 2.
Lower and upper limits:
lim inf a(n)/n^d = (b - 1)^d/(b - 2), for n -> infinity, for b > 2.
lim sup a(n)/n^d = (b - 1)/(b - 2), for n -> infinity, for b > 2.
In case of b = 2:
lim a(n)/log(n) = 1/log(2), for n -> infinity.
(End)