A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 6, 15, 20, 10, 1, 0, 21, 51, 65, 50, 15, 1, 0, 85, 203, 252, 210, 105, 21, 1, 0, 385, 912, 1120, 938, 560, 196, 28, 1, 0, 1907, 4527, 5520, 4620, 2898, 1302, 336, 36, 1, 0, 10205, 24370, 29700, 24780, 15792, 7812, 2730, 540, 45, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 3 1 0 2 6 6 1 0 6 15 20 10 1 0 21 51 65 50 15 1 0 85 203 252 210 105 21 1 0 385 912 1120 938 560 196 28 1 0 1907 4527 5520 4620 2898 1302 336 36 1 0 10205 24370 29700 24780 15792 7812 2730 540 45 1 Row n = 4 counts the following set partitions: {{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}} {{13}{24}} {{12}{34}} {{1}{23}{4}} {{123}{4}} {{12}{3}{4}} {{124}{3}} {{1}{24}{3}} {{134}{2}} {{13}{2}{4}} {{14}{23}} {{14}{2}{3}}
Links
Crossrefs
Programs
-
Mathematica
croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]==k&]],{n,0,8},{k,0,n}]
Comments