cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324190 Number of distinct values A297167 obtains over the divisors > 1 of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 3, 4, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 5, 1, 3, 1, 4, 3, 2, 1, 5, 2, 3, 2, 4, 1, 4, 2, 6, 2, 2, 1, 4, 1, 2, 4, 6, 2, 3, 1, 4, 2, 3, 1, 5, 1, 2, 3, 4, 2, 3, 1, 6, 4, 2, 1, 5, 2, 2, 2, 6, 1, 4, 2, 4, 2, 2, 2, 6, 1, 3, 4, 5, 1, 3, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

Number of distinct values of the sum {excess of d} + {the index of the largest prime factor of d} (that is, A046660(d) + A061395(d)) that occurs over all divisors d > 1 of n.
Number of distinct values A297112 obtains over the divisors > 1 of n; a(1) = 0.

Crossrefs

Programs

  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A324190(n) = #Set(apply(A297167, select(d -> d>1,divisors(n))));

Formula

a(n) = A001221(A324202(n)).
a(n) >= A324120(n).
a(n) >= A001222(n) >= A001221(n). [See A324179 and A324192 for differences]
a(n) <= A000005(n)-1. [See A324191 for differences]
For all primes p, a(p^k) = k.