cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324221 Number of connected 2n-regular loopless multigraphs with five nodes.

Original entry on oeis.org

0, 1, 6, 15, 36, 72, 139, 244, 414, 663, 1030, 1540, 2247, 3187, 4433, 6036, 8088, 10658, 13861, 17785, 22571, 28329, 35227, 43401, 53049, 64333, 77485, 92697, 110235, 130324, 153268, 179326, 208843, 242115, 279529, 321422, 368226, 420319, 478182, 542238, 613017
Offset: 0

Views

Author

Natan Arie Consigli, Feb 18 2019

Keywords

Comments

There are no (2n+1)-regular multigraphs satisfying the condition above.
Multigraphs are loopless.
Initial terms computed with 'Nauty and Traces'.

Crossrefs

Row n=5 of A328682.

Programs

  • nauty
    for ((n=0;n<76;n=n+2)); do geng -c -d1 5 -q | multig -m${n} -u; done

Formula

Conjectures from Colin Barker, Feb 18 2019: (Start)
G.f.: x*(1 + 3*x - x^2 + 4*x^3 - x^4 + 6*x^5 + 4*x^7 - x^8 - x^9 + x^10) / ((1 - x)^6*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) - 2*a(n-5) + 4*a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) - 2*a(n-10) + 3*a(n-11) - a(n-12) for n>11.
(End)
Equivalent conjecture: 1152*a(n) = 6*n^5 + 30*n^4 + 220*n^3 + 540*n^2 + 1143*n - 353 + 72*A056594(n) + 128*A049347(n) + 153*A181983(n+1). - R. J. Mathar, Mar 09 2019

Extensions

a(28)-a(30) from Andrew Howroyd, Mar 18 2020