A324224 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1
Examples
Triangle T(n,k) begins: : 1 ; : 1, 2, 1 ; : 1, 4, 6, 4, 1 ; : 1, 6, 18, 24, 18, 6, 1 ; : 1, 8, 36, 96, 120, 96, 36, 8, 1 ; : 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1 ; : 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1 ;
Links
- Alois P. Heinz, Rows n = 1..100, flattened
- Wikipedia, Permutation
- Wikipedia, Permutation matrix
Crossrefs
Programs
-
Maple
b:= proc(s, c) option remember; (n-> `if`(n=0, c, add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)): seq(T(n), n=1..8); # second Maple program: egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1): T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): seq(seq(T(n, k), k=1-n..n-1), n=1..8); # third Maple program: T:= (n, k)-> (t-> `if`(t
-
Mathematica
T[n_, k_] := With[{t = Abs[k]}, If[t
Jean-François Alcover, Mar 25 2021, after 3rd Maple program *)