cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324224 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1

Views

Author

Alois P. Heinz, Feb 18 2019

Keywords

Examples

			Triangle T(n,k) begins:
  :                                 1                              ;
  :                           1,    2,    1                        ;
  :                     1,    4,    6,    4,    1                  ;
  :               1,    6,   18,   24,   18,    6,   1             ;
  :          1,   8,   36,   96,  120,   96,   36,   8,  1         ;
  :      1, 10,  60,  240,  600,  720,  600,  240,  60, 10,  1     ;
  :  1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1  ;
		

Crossrefs

Columns k=0-6 give (offsets may differ): A000142, A001563, A001286, A005990, A061206, A062199, A062148.
Row sums give A306495(n-1).
Cf. A132159 (right part of triangle), A306234, A324225.

Programs

  • Maple
    b:= proc(s, c) option remember; (n-> `if`(n=0, c,
          add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):
    seq(T(n), n=1..8);
    # second Maple program:
    egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):
    T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1-n..n-1), n=1..8);
    # third Maple program:
    T:= (n, k)-> (t-> `if`(t
    				
  • Mathematica
    T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)

Formula

T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)!/t! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = 1/|k|! * A324225(n,k).
E.g.f. of column k: x^t/t! * hypergeom([2, t], [t+1], x) with t = |k|+1.
Sum_{k=1-n..n-1} T(n,k) = A306495(n-1).