A324225 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040
Offset: 1
Examples
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices [1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1] [ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ] [ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2]. Triangle T(n,k) begins: : 1 ; : 1, 2, 1 ; : 2, 4, 6, 4, 2 ; : 6, 12, 18, 24, 18, 12, 6 ; : 24, 48, 72, 96, 120, 96, 72, 48, 24 ; : 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120 ;
Links
- Alois P. Heinz, Rows n = 1..100, flattened
- Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, and Pedro Ribeiro, Fidelity decay and error accumulation in quantum volume circuits, arXiv:2404.11444 [quant-ph], 2024. See p. 18.
- Wikipedia, Permutation
- Wikipedia, Permutation matrix
Crossrefs
Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.
Row sums give A001563.
T(n+1,n) gives A000142.
T(n+1,n-1) gives A052849.
T(n+1,n-2) gives A052560 for n>1.
Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.
Cf. A001710.
Programs
-
Maple
b:= proc(s, c) option remember; (n-> `if`(n=0, c, add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)): seq(T(n), n=1..8); # second Maple program: egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1): T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): seq(seq(T(n, k), k=1-n..n-1), n=1..8); # third Maple program: T:= (n, k)-> (t-> `if`(t
-
Mathematica
T[n_, k_] := With[{t = Abs[k]}, If[t
Jean-François Alcover, Mar 25 2021, after 3rd Maple program *)
Comments