A324238 Number of set partitions of [n] where all subsets are partitioned into the same number of nonempty subsets.
1, 1, 3, 9, 32, 133, 625, 3328, 20172, 137073, 1023610, 8327069, 73711863, 707141074, 7278630390, 79522233635, 916354807657, 11119419230485, 142082222254701, 1908850117706652, 26862951637197372, 394233330125117457, 6013602782397882264, 95208871146458467659
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Partition of a set
Crossrefs
Row sums of A324162.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0 or k>n, 0, add(b(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n))) end: a:= n-> add(b(n, k), k=0..n): seq(a(n), n=0..23);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]]; a[n_] := Sum[b[n, k], {k, 0, n}]; a /@ Range[0, 23] (* Jean-François Alcover, May 05 2020, after Maple *)