cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324265 a(n) = 5*343^n.

Original entry on oeis.org

5, 1715, 588245, 201768035, 69206436005, 23737807549715, 8142067989552245, 2792729320416420035, 957906156902832072005, 328561811817671400697715, 112696701453461290439316245, 38654968598537222620685472035, 13258654229298267358895116908005, 4547718400649305704101025099445715
Offset: 0

Views

Author

Stefano Spezia, Feb 20 2019

Keywords

Comments

x = a(n) and y = A324266(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 5 and A324266(0) = 2, 5^2 + 7 = 32 = 4*2^3.
		

Crossrefs

Cf. A324266 (2*49^n), A000290 (n^2), A000578 (n^3), A193577 (5*7^n).

Programs

  • GAP
    List([0..20], n->5*343^n);
    
  • Magma
    [5*343^n: n in [0..20]];
    
  • Maple
    a:=n->5*343^n: seq(a(n), n=0..20);
  • Mathematica
    5*343^Range[0,20]
  • PARI
    a(n) = 5*343^n;

Formula

O.g.f.: 5/(1 - 343*x).
E.g.f.: 5*exp(343*x).
a(n) = 343*a(n-1) for n > 0.
a(n) = (1/25)*(A193577(n))^3.