A324265 a(n) = 5*343^n.
5, 1715, 588245, 201768035, 69206436005, 23737807549715, 8142067989552245, 2792729320416420035, 957906156902832072005, 328561811817671400697715, 112696701453461290439316245, 38654968598537222620685472035, 13258654229298267358895116908005, 4547718400649305704101025099445715
Offset: 0
Examples
For a(0) = 5 and A324266(0) = 2, 5^2 + 7 = 32 = 4*2^3.
Links
- K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Programs
-
GAP
List([0..20], n->5*343^n);
-
Magma
[5*343^n: n in [0..20]];
-
Maple
a:=n->5*343^n: seq(a(n), n=0..20);
-
Mathematica
5*343^Range[0,20]
-
PARI
a(n) = 5*343^n;
Formula
O.g.f.: 5/(1 - 343*x).
E.g.f.: 5*exp(343*x).
a(n) = 343*a(n-1) for n > 0.
a(n) = (1/25)*(A193577(n))^3.
Comments