cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324271 a(n) = 181*13^(13*n).

Original entry on oeis.org

181, 54820394293197793, 16603732764981619615170330497629, 5028857331023091670255052219467889871886268137, 1523115700170851818946635098990437850680396062232555484942661, 461313830041580805547042416276650834293620917849684448198307537920811805233, 139720475446324270671242216643939258928764157180440338773843068067157129372210783782659949
Offset: 0

Views

Author

Stefano Spezia, Mar 28 2019

Keywords

Comments

x = a(n) and y = A324272(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 181 and A324272(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
		

Crossrefs

Cf. A324272: 2*13^(2*n); A010801: n^13; A001022: 13^n.

Programs

  • GAP
    List([0..20], n->181*302875106592253^n);
    
  • Magma
    [181*302875106592253^n: n in [0..20]];
    
  • Maple
    a:=n->181*302875106592253^n: seq(a(n), n=0..20);
  • Mathematica
    181 302875106592253^Range[0, 20]
  • PARI
    a(n) = 181*302875106592253^n;

Formula

O.g.f.: 181/(1 - 302875106592253*x).
E.g.f.: 181*exp(302875106592253*x).
a(n) = 302875106592253*a(n-1) for n > 0.
a(n) = 181*302875106592253^n.
a(n) = 181*A010801(A001022(n)).