cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324305 Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-2} (n + k*y + n*y^2) for n > 1 with a single '1' in row 1.

Original entry on oeis.org

1, 2, 0, 2, 9, 3, 18, 3, 9, 64, 48, 200, 96, 200, 48, 64, 625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625, 7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776, 117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649, 2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152
Offset: 1

Views

Author

Paul D. Hanna, Feb 28 2019

Keywords

Examples

			E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2) and satisfies A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
Explicitly,
A(x,y) = x + (2*y^2 + 2)*x^2/2! + (9*y^4 + 3*y^3 + 18*y^2 + 3*y + 9)*x^3/3! + (64*y^6 + 48*y^5 + 200*y^4 + 96*y^3 + 200*y^2 + 48*y + 64)*x^4/4! + (625*y^8 + 750*y^7 + 2775*y^6 + 2280*y^5 + 4300*y^4 + 2280*y^3 + 2775*y^2 + 750*y + 625)*x^5/5! + (7776*y^10 + 12960*y^9 + 46440*y^8 + 53640*y^7 + 100584*y^6 + 81360*y^5 + 100584*y^4 + 53640*y^3 + 46440*y^2 + 12960*y + 7776)*x^6/6! + (117649*y^12 + 252105*y^11 + 909979*y^10 + 1337700*y^9 + 2594501*y^8 + 2753415*y^7 + 3604342*y^6 + 2753415*y^5 + 2594501*y^4 + 1337700*y^3 + 909979*y^2 + 252105*y + 117649)*x^7/7! + ...
Setting y = 1 yields an o.g.f. of A006013:
A(x,y=1) = x + 2*x^2 + 7*x^3 + 30*x^4 + 143*x^5 + 728*x^6 + 3876*x^7 + 21318*x^8 + 120175*x^9 + ... + binomial(3*n-2,n-1)/n * x^n + ...
TRIANGLE.
This triangle of coefficients in Product_{k=0..n-2} (n + k*y + n*y^2), n >= 1, begins
1;
2, 0, 2;
9, 3, 18, 3, 9;
64, 48, 200, 96, 200, 48, 64;
625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625;
7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776;
117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649;
2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152; ...
RELATED SERIES.
The e.g.f. may be defined by A(x,y) = Series_Reversion( x/G(x,y) )
where G(x,y) is the e.g.f. of A201949 and equals
G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2)
so that
G(x,y) = 1 + (1 + y^2)*x + (1 + y + 2*y^2 + y^3 + y^4)*x^2/2! + (1 + 3*y + 5*y^2 + 6*y^3 + 5*y^4 + 3*y^5 + y^6)*x^3/3! + (1 + 6*y + 15*y^2 + 24*y^3 + 28*y^4 + 24*y^5 + 15*y^6 + 6*y^7 + y^8)*x^4/4! + (1 + 10*y + 40*y^2 + 90*y^3 + 139*y^4 + 160*y^5 + 139*y^6 + 90*y^7 + 40*y^8 + 10*y^9 + y^10)*x^5/5! + ...
and G(x,y) = x / Series_Reversion( A(x,y) ).
RELATED TRIANGLE.
Triangle A201949 of coefficients in G(x,y) such that A(x/G(x,y),y) = x begins
1;
1, 0, 1;
1, 1, 2, 1, 1;
1, 3, 5, 6, 5, 3, 1;
1, 6, 15, 24, 28, 24, 15, 6, 1;
1, 10, 40, 90, 139, 160, 139, 90, 40, 10, 1;
1, 15, 91, 300, 629, 945, 1078, 945, 629, 300, 91, 15, 1; ...
where the g.f. of row n is Product_{k=0..n-1} (1 + k*y + y^2) for n >= 0.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=polcoeff(prod(j=0, n-2,  n + j*y + n*y^2), k, y)}
    {for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}
    
  • PARI
    /* A(x,y) = Series_Reversion(x/G(x,y)) where G(x,y) = e.g.f. A201949 */
    {T(n,k) = my(G=1,A=x);
    G = sum(m=0,n, x^m/m! * prod(j=0,m-1, 1 + j*y + y^2) +x*O(x^n));
    A = serreverse(x/G);
    n!*polcoeff(polcoeff(A,n,x),k,y)}
    {for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}

Formula

GENERATING FUNCTIONS.
E.g.f.: A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
E.g.f.: A(x,y) = Series_Reversion( x*(1 - x*y)^(1/y + y) ), wrt x.
E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2)
E.g.f.: A(x,y) = Series_Reversion( x/G(x,y) ) such that A(x/G(x,y),y) = x, where G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2) is the e.g.f. of A201949.
PARTICULAR ARGUMENTS.
E.g.f. at y = 0: A(x,y=0) = -LambertW(-x) = x*exp(-LambertW(-x)).
E.g.f. at y = 1: A(x,y=1) = x*G(x)^2, where G = 1 + x*G(x)^3 is the g.f. of A001764.
FORMULAS INVOLVING TERMS.
Row sums: Sum_{k=0..2*n-2} T(n,k) = (3*n-2)!/(2*n-1)! for n >= 1.
T(n,0) = T(n,2*n-2) = n^(n-1) for n >= 1.
T(n,n-1) = A324304(n) for n >= 1.