cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324316 Primary Carmichael numbers.

Original entry on oeis.org

1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
Offset: 1

Views

Author

Keywords

Comments

Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997).
Dickson's conjecture implies that the sequence is infinite, see Kellner 2019.
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp.
The distribution of primary Carmichael numbers is A324317.
See Kellner and Sondow 2019 and Kellner 2019.
Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020

Examples

			1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
		

Crossrefs

Subsequence of A002997, A324315.
Least primary Carmichael number with n prime factors is A306657.

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
    Select[Range[1, 10^7, 2], TestCP[#] &]
  • Perl
    use ntheory ":all"; my $m; forsquarefree { $m=$; say if @ > 2 && is_carmichael($m) && vecall { $ == vecsum(todigits($m,$)) } @; } 1e7; # _Dana Jacobsen, Mar 28 2019
    
  • Python
    from sympy import factorint
    from sympy.ntheory import digits
    def ok(n):
        pf = factorint(n)
        if n < 2 or max(pf.values()) > 1: return False
        return all(sum(digits(n, p)[1:]) == p for p in pf)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022

Formula

a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).