A324320 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also octagonal numbers (A000567) with index equal to their largest prime factor.
1045, 2465, 2821, 15841, 20501, 34133, 51221, 68101, 89441, 116033, 118405, 162401, 170885, 216545, 300833, 364705, 439301, 472033, 530881, 642181, 687365, 746005, 970145, 976981, 997633, 1104133, 1148245, 1193221, 1231361, 1239061, 1398101, 1654661, 1971541
Offset: 1
Examples
A324315(4) = 1045 = 5 * 11 * 19 = 19 * (3 * 19 - 2) = A000567(19), so 1045 is a member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][[1]]; ON[n_] := n(3n - 2); TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &]; Select[ON@ Prime[Range[100]], TestS[#] &]
Extensions
More terms from Amiram Eldar, Dec 05 2020
Comments