A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.
1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 5 0 0 0 0 1 16 4 0 0 0 0 1 42 42 0 0 0 0 0 1 99 258 27 0 0 0 0 0 1 219 1222 465 0 0 0 0 0 Row n = 6 counts the following set partitions: {{123456}} {{1235}{46}} {{13}{25}{46}} {{124}{356}} {{14}{25}{36}} {{1245}{36}} {{14}{26}{35}} {{1246}{35}} {{15}{24}{36}} {{125}{346}} {{13}{2456}} {{134}{256}} {{1345}{26}} {{1346}{25}} {{135}{246}} {{1356}{24}} {{136}{245}} {{14}{2356}} {{145}{236}} {{146}{235}} {{15}{2346}}
Crossrefs
Programs
-
Mathematica
croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]
Comments