A324332 Numbers m such that A324331(m) = (m-1)^2 - phi(m)*sigma(m) is a square, even though they are not squarefree semiprimes (A006881).
12, 20, 24, 40, 42, 44, 45, 48, 63, 72, 80, 96, 104, 105, 108, 132, 135, 160, 189, 190, 192, 200, 216, 275, 320, 342, 384, 385, 399, 405, 429, 452, 456, 465, 567, 575, 610, 637, 639, 640, 648, 693, 768, 783, 848, 969, 988, 1000, 1015, 1044, 1098, 1105, 1127, 1210, 1215
Offset: 1
Keywords
Examples
A324331(45) = 64, a square, even though 45 is not squarefree semiprime, so 45 is a term.
Links
- B. Alspach, Research problems, Problem 18, Discrete Math 40 (1982), page 126.
Programs
-
PARI
f(n) = (n-1)^2 - eulerphi(n)*sigma(n); \\ A324331 isok(n) = !((bigomega(n) == 2) && issquarefree(n)) && issquare(f(n));
Comments