cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324351 Square array read by antidiagonals: A(x,y) is the result from writing x and y in primorial base (A049345) and starting from their least significant ends, always choosing a minimal digit from each digit position, and converting back to decimal.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 1, 0, 3, 4, 3, 0, 1, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 2, 1, 0, 5, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 0, 0, 0, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 0, 0, 0, 1, 0, 3, 4, 3, 6, 7, 6, 3, 4, 3, 0, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 25 2019

Keywords

Examples

			The array A begins:
       0   1   2   3   4   5   6   7   8   9  10  11  12
  x/y  ------------------------------------------------------
   0:  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, ...
   1:  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0,  1,  0, ...
   2:  0,  0,  2,  2,  2,  2,  0,  0,  2,  2,  2,  2,  0, ...
   3:  0,  1,  2,  3,  2,  3,  0,  1,  2,  3,  2,  3,  0, ...
   4:  0,  0,  2,  2,  4,  4,  0,  0,  2,  2,  4,  4,  0, ...
   5:  0,  1,  2,  3,  4,  5,  0,  1,  2,  3,  4,  5,  0, ...
   6:  0,  0,  0,  0,  0,  0,  6,  6,  6,  6,  6,  6,  6, ...
   7:  0,  1,  0,  1,  0,  1,  6,  7,  6,  7,  6,  7,  6, ...
   8:  0,  0,  2,  2,  2,  2,  6,  6,  8,  8,  8,  8,  6, ...
   9:  0,  1,  2,  3,  2,  3,  6,  7,  8,  9,  8,  9,  6, ...
  10:  0,  0,  2,  2,  4,  4,  6,  6,  8,  8, 10, 10,  6, ...
  11:  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,  6, ...
  12:  0,  0,  0,  0,  0,  0,  6,  6,  6,  6,  6,  6, 12, ...
etc.
In primorial base, 5 is written as "21" (as 5 = 2*2 + 1*1) and 10 is written as "120" (as 10 = 1*6 + 2*2 + 0*1). Aligning them digit by digit (from the least significant end), and then always choosing a lesser digit leaves us with digits "020", which is 4 written in primorial base as 2*2 + 0*1 = 4, thus A(5,10) = A(10,5) = 4.
		

Crossrefs

Cf. A001477 (central diagonal), A002110, A049345, A276085, A276086, A324350.

Programs

  • PARI
    up_to = 65703; \\ = binomial(362+1,2)
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324351sq(row,col) = A276085(gcd(A276086(row),A276086(col)));
    A324351list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A324351sq(a-col,col))); (v); };
    v324351 = A324351list(up_to);
    A324351(n) = v324351[1+n]; \\ Antti Karttunen, Feb 25 2019

Formula

A(x,y) = A276085(A324350(x,y)) = A276085(gcd(A276086(x), A276086(y))).