cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324369 Product of all primes p dividing n such that the sum of the base p digits of n is at least p, or 1 if no such prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 15, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 1, 5, 6, 1, 2, 3, 10, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 10, 7, 2, 3, 2, 5, 6, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) = n iff n divides denominator(Bernoulli_n(x) - Bernoulli_n) (see A195441).
a(n) = n iff n = 1 or n is in A324315.
a(n) = n if n is a Carmichael number (A002997).
See the section on Bernoulli polynomials in Kellner and Sondow 2019.

Examples

			6 = 2 * 3, and 6 = 110_2 in base 2 with 1+1+0 >= 2, but 6 = 20_3 in base 3 with 2+0 = 2 < 3, so a(6) = 2.
		

Crossrefs

Programs

  • Maple
    g:= proc(n,p) convert(convert(n,base,p),`+`) >= p end proc:
    f:= proc(n) local p;
          convert(select(p -> g(n,p), numtheory:-factorset(n)),`*`)
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 28 2019
  • Mathematica
    SD[n_, p_] := If[n < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    DD1[n_] := Times @@ Select[LP[n], SD[n, #] >= # &];
    Table[DD1[n], {n, 1, 100}]
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors as pf
    def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) >= p)
    print([a(n) for n in range(1, 98)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324371(n) = A007947(n) = radical(n).
a(n) * A324370(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).
a(n) * A324370(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).