cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324371 Product of all primes p dividing n such that the sum of the base p digits of n is less than p, or 1 if no such prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 5, 13, 3, 7, 29, 15, 31, 2, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 1, 23, 47, 1, 7, 5, 17, 13, 53, 3, 55, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 1, 73, 37, 5, 19, 77, 13, 79, 5, 3, 41, 83, 21
Offset: 1

Views

Author

Keywords

Comments

Does not contain any elements of A324315, and thus none of the Carmichael numbers A002997.
See the section on Bernoulli polynomials in Kellner and Sondow 2019.

Examples

			For p = 2 and 3, the sum of the base p digits of 6 is 1+1+0 = 2 >= 2 and 2+0 = 2 < 3, respectively, so a(6) = 3.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(select(p -> convert(convert(n,base,p),`+`)Robert Israel, Apr 26 2020
  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    DD3[n_] := Times @@ Select[LP[n], SD[n, #] < # &];
    Table[DD3[n], {n, 1, 100}]
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors as pf
    def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) < p)
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324369(n) = A007947(n) = radical(n).
a(n) * A195441(n) = a(n) * A324369(n) * A324370(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).